Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 498, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664541

RESUMO

Siderophore-dependent iron uptake is a mechanism by which microorganisms scavenge and utilize iron for their survival, growth, and many specialized activities, such as pathogenicity. The siderophore biosynthetic system PubABC in Shewanella can synthesize a series of distinct siderophores, yet how it is regulated in response to iron availability remains largely unexplored. Here, by whole genome screening we identify TCS components histidine kinase (HK) BarA and response regulator (RR) SsoR as positive regulators of siderophore biosynthesis. While BarA partners with UvrY to mediate expression of pubABC post-transcriptionally via the Csr regulatory cascade, SsoR is an atypical orphan RR of the OmpR/PhoB subfamily that activates transcription in a phosphorylation-independent manner. By combining structural analysis and molecular dynamics simulations, we observe conformational changes in OmpR/PhoB-like RRs that illustrate the impact of phosphorylation on dynamic properties, and that SsoR is locked in the 'phosphorylated' state found in phosphorylation-dependent counterparts of the same subfamily. Furthermore, we show that iron homeostasis global regulator Fur, in addition to mediating transcription of its own regulon, acts as the sensor of iron starvation to increase SsoR production when needed. Overall, this study delineates an intricate, multi-tiered transcriptional and post-transcriptional regulatory network that governs siderophore biosynthesis.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Shewanella , Sideróforos , Shewanella/metabolismo , Shewanella/genética , Sideróforos/biossíntese , Sideróforos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fosforilação , Ferro/metabolismo
2.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055165

RESUMO

Nitrite and nitric oxide (NO), two active and critical nitrogen oxides linking nitrate to dinitrogen gas in the broad nitrogen biogeochemical cycle, are capable of interacting with redox-sensitive proteins. The interactions of both with heme-copper oxidases (HCOs) serve as the foundation not only for the enzymatic interconversion of nitrogen oxides but also for the inhibitory activity. From extensive studies, we now know that NO interacts with HCOs in a rapid and reversible manner, either competing with oxygen or not. During interconversion, a partially reduced heme/copper center reduces the nitrite ion, producing NO with the heme serving as the reductant and the cupric ion providing a Lewis acid interaction with nitrite. The interaction may lead to the formation of either a relatively stable nitrosyl-derivative of the enzyme reduced or a more labile nitrite-derivative of the enzyme oxidized through two different pathways, resulting in enzyme inhibition. Although nitrite and NO show similar biochemical properties, a growing body of evidence suggests that they are largely treated as distinct molecules by bacterial cells. NO seemingly interacts with all hemoproteins indiscriminately, whereas nitrite shows high specificity to HCOs. Moreover, as biologically active molecules and signal molecules, nitrite and NO directly affect the activity of different enzymes and are perceived by completely different sensing systems, respectively, through which they are linked to different biological processes. Further attempts to reconcile this apparent contradiction could open up possible avenues for the application of these nitrogen oxides in a variety of fields, the pharmaceutical industry in particular.


Assuntos
Bactérias/enzimologia , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Hemeproteínas/metabolismo , Ácidos de Lewis/metabolismo
3.
Life (Basel) ; 11(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34575075

RESUMO

Arc (anoxic redox control), one of the most intensely investigated two-component regulatory systems in γ-proteobacteria, plays a major role in mediating the metabolic transition from aerobiosis to anaerobiosis. In Shewanella oneidensis, a research model for respiratory versatility, Arc is crucial for aerobic growth. However, how this occurs remains largely unknown. In this study, we demonstrated that the loss of the response regulator ArcA distorts the correlation between transcription and translation by inhibiting the ribosome biosynthesis. This effect largely underlies the growth defect because it concurs with the effect of chloramphenicol, which impairs translation. Reduced transcription of ArcA-dependent ribosomal protein S1 appears to have a significant impact on ribosome assembly. We further show that the lowered translation efficiency is not accountable for the envelope defect, another major defect resulting from the ArcA loss. Overall, our results suggest that although the arcA mutation impairs growth through multi-fold complex impacts in physiology, the reduced translation efficacy appears to be a major cause for the phenotype, demonstrating that Arc is a primary system that coordinates proteomic resources with metabolism in S. oneidensis.

4.
Microbiol Spectr ; 9(1): e0069021, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34406804

RESUMO

The bacterial cell envelope is not only a protective structure that surrounds the cytoplasm but also the place where a myriad of biological processes take place. This multilayered complex is particularly important for electroactive bacteria such as Shewanella oneidensis, as it generally hosts branched electron transport chains and numerous reductases for extracellular respiration. However, little is known about how the integrity of the cell envelope is established and maintained in these bacteria. By tracing the synthetic lethal effect of Arc two-component system and σE in S. oneidensis, in this study, we identified the lipopolysaccharide transport (Lpt) system as the determining factor. Both Arc and σE, by regulating transcription of lptFG and lptD, respectively, are required for the Lpt system to function properly. The ArcA loss results in an LptFG shortage that triggers activation of σE and leads to LptD overproduction. LptFG and LptD at abnormal levels cause a defect in the lipopolysaccharide (LPS) transport, leading to cell death unless σE-dependent envelope stress response is in place. Overall, our report reveals for the first time that Arc works together with σE to maintain the integrity of the S. oneidensis cell envelope by participating in the regulation of the LPS transport system. IMPORTANCE Arc is a well-characterized global regulatory system that modulates cellular respiration by responding to changes in the redox status in bacterial cells. In addition to regulating expression of respiratory enzymes, Shewanella oneidensis Arc also plays a critical role in cell envelope integrity. The absence of Arc and master envelope stress response (ESR) regulator σE causes a synthetic lethal phenotype. Our research shows that the Arc loss downregulates lptFG expression, leading to cell envelope defects that require σE-mediated ESR for viability. The complex mechanisms revealed here underscore the importance of the interplay between global regulators in bacterial adaption to their natural inhabits.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Lipopolissacarídeos/metabolismo , Shewanella/metabolismo , Fator sigma/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico , Membrana Celular/genética , Regulação Bacteriana da Expressão Gênica , Shewanella/genética , Fator sigma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...